

YX1903D 归零码断点续传 LED 恒流驱动器

1. 特性

- OUT 输出端口耐压: 32V
- 支持三通道恒流驱动,每通道 17mA
- 通道间电流误差 ±3%, 片间误差 ±5%
- VDD 内置 5V 稳压管,串联电阻后支持 4.5~32V 线归零码协议。
- 内置数据整形以及再生功能
- 数据传输速率 800K
- 支持断点续传功能
- 支持 PWM 256 级辉度可调
- 大于 8K 高刷
- 级联不小于 1024 通道
- 上电默认不亮
- 封装: SOP8

2. 应用范围

- 点光源
- 护栏管
- 软灯条以及流星灯

3. 说明

YX1903D是一款 256 级辉度的三通道断点续传 LED 恒流驱动芯片,支持 300-900ns 归零码协议,兼容单线归零码协议

芯片支持双通道断电续传功能,当出现任意坏点 时,故障点信号可以继续下传,保证了后续灯珠的显 示效果。

芯片内置 RGB 三路 PWM 恒流驱动。每路驱动电流为 17mA,恒流精度好。三路 PWM 输出支持高刷功能,可在高于 8K 刷新率下实现 256 级辉度,手机摄像绝对无频闪。

芯片集成了数据再生和数据整形功能,有效解决 了同类芯片级联较长时存在的数据失真或者误采样问 题。

芯片可通过外围 MCU 控制实现单独辉度、级联控制等实现 256 级灰度的彩色点阵发光控制。

工业级设计,质量稳定可靠。

4. 应用电路

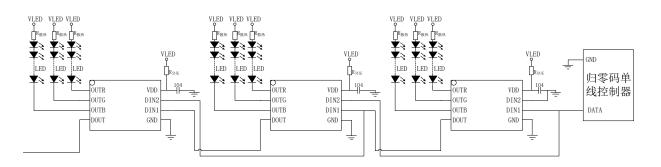


图 4.1 YX1903D应用电路 1

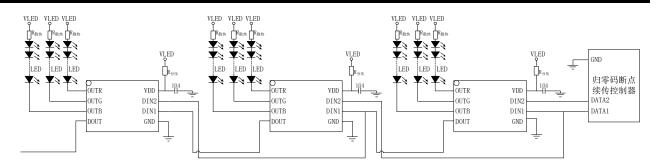


图 4.1 YX1903D应用电路 2

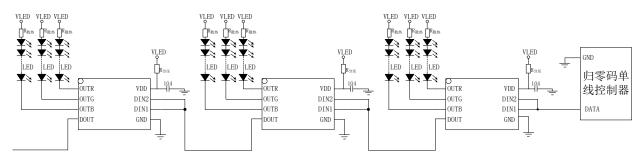


图 4.1 YX1903D应用电路 3

5. 管脚配置

图 5.1 YX1903D管脚图

编号	管脚名称	功能描述
1	OUTR	红光 PWM 恒流输出
2	OUTG	绿光 PWM 恒流输出
3	OUTB	蓝光 PWM 恒流输出
4	DOUT	数据转发
5	DIN1	数据主输入通道
6	GND	芯片地
7	DIN2	数据备份输入通道
8	VDD	电源供电

6. 极限工作参数

符号	说明	范围	单位
V_{DD}	逻辑电源电压	+4.5~+6	V
$V_{\rm IN}$	逻辑输入电压	-0.5~6	V
$V_{ m OUT}$	输出端口耐压	>32	V
T_{opt}	工作温度	-40~+85	$^{\circ}\!\mathbb{C}$
$T_{ m stg}$	储存温度	-50~+150	$^{\circ}\!\mathbb{C}$
ESD	抗静电 ESD(HBM)	4000	V
Pd	最大输出功率	400	mW

7. 结构框图

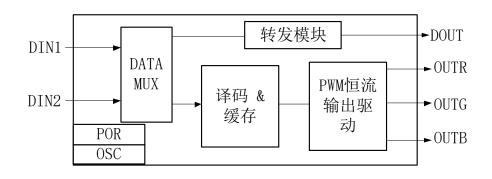


图 7.1 结构框图

8. 电气特性

(如无特殊说明,下列条件均为 T_A=25℃, GND=0V)

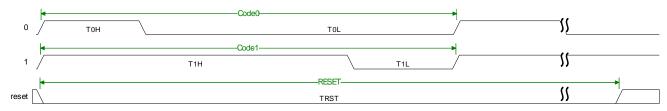
<i>h</i>	744 HT)554 _D. &z. /cl.	范围			36.43.
符号	说明	测试条件	最小	典型	最大	単位
VDD	芯片电源电压	VIN=12V, R=1K		5.5		V
V_{start}	芯片启动电压			3		V
I_{RGB}	芯片输出电流	V_IOUR>0.9V		17		mA
I_OP	静态工作电流	VDD=5V			2	mA
D _{Iout}	芯片片间偏移	V_IOUR>0.9V	-5%		+5%	
V_{DataH}	数据端口翻转高电平	VDD=5V		3		V
V _{DataL}	数据端口翻转低电 平	VDD=5V		2		V
$V_{ m RGB}$	芯片恒流端口电压 拐点	R/G/B100% 占空比输 出			0.9	v

符号	说明	测试条件	范围			- 单位
ग उ			最小	典型	最大	平位
F _{DATA}	数据传输速率			800		KHz
F_{PWM}	扫描频率	RGB 正常输出	8			KHz
T_{DATA}	数据传输延时				150	ns
Ci	输入电容				15	pF

9. 应用说明

9.1. 协议说明

芯片支持单线归零码协议,只须将 DIN1/DIN2 双线短接即可实现。本协议简单可靠,成本低廉,易于串联,支持最高可达 1024 级串联。适用于点光源。


断点续传协议为归零码协议的扩展,其将单一的数据输入扩展为两条输入 DIN1/DIN2。其中 DIN2 为备份输入,DIN1 为主输入。每帧传输的第一组数据(本芯片为 3 通道,即 24bit 数据)会通过备份输入通道 DIN2 重复传输一次,之后 DIN1/DIN2 一起传输。

如果芯片收到 DIN2 的数据后,将取 48bit 数据,并丢弃前 24bit,余下后 24bit 数据作为 RGB 的输出灰度。然后将 48bit 之后的数据转发到后一级;

如果芯片先收到 DIN1 的数据,则芯片判定上前前一级出现坏点,从 DIN1 开始取 24bit 数据用作 RGB 输入灰度,并将之后的数据转发到后一级。

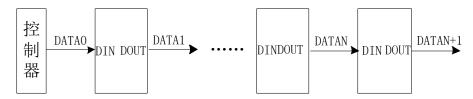
本芯片支持多颗串联后同步刷新功能。

■ 时序码型如下所示,"0"码是数据 0,"1"码是数据 1,判断标准如下。

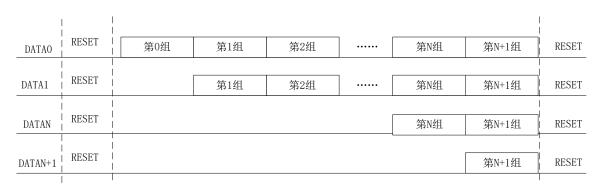
归零码的时序码型

800K 通讯速率的归零码 "0"或"1"码及 RESET 时间判断

符号 说明	最小值	典型值	最大值	容许偏差	单位
-------	-----	-----	-----	------	----

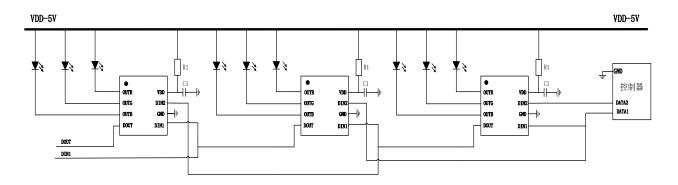


ТОН	数据0的高电平时间		0.3		±0.1	us
T0L	数据0的低电平时间		0.9		±0.1	us
T1H	数据1的高电平时间		0.9		±0.1	us
T1L	数据 1 的低电平时间		0.3		±0.1	us
Trst	RESET 信号低电平时间	64	80	-		us


■ 24bit 数据结构(高位先发, 按照 RGB 的顺序发送数据)

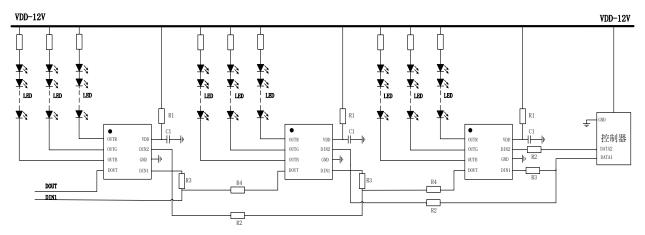
 $bit 23 \\ \hline \text{R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0}$

■ 数据传输和转发


数据截取方式如下图所示,其中每组为 24bit 的灰度值。

10. 典型应用电路说明

10.1.电源电压 5V, 每通道带单颗 LED, 恒定电流(17mA)输出。

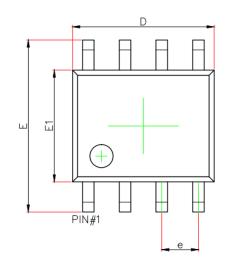


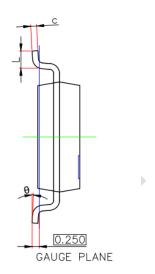
注:上图采用恒流方式,可以在电压不断下降的同时达到亮度和色温不变的理想效果。 R1 电阻是为了防止电源尖峰和电源 反接, 在 IC 供电端(VDD)串接的一个不大于 100 欧的电阻,C1 的电容为旁路电容。

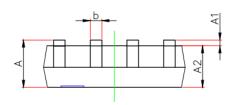
5V应用,外围器件较少,传输距离远,通过合适设计可达 30m。

建议在 DOUT 和 DIN 之间串接 180 欧姆的电阻。

10.2.电源电压 12V, 每通道带三颗 LED, 恒定电流(17mA)输出。


注: 上图采用恒流方式,可以在电压不断下降的同时达到亮度和色温不变的理想效果。 R1 建议取值 1K 为 IC 内部 LD0 分压电阻, C1 的电容为旁路滤波电容。 R2、R3、R4 为 IC 的信号输入与信号输出提供热插拔保护和阻护匹配的电阻, R2 建议取值 510 欧姆, R3 建议取值 510 欧姆, R4 建议取值 120 欧姆。其中散热电阻的计算公式为:


$$R_{\text{散热}} = \frac{12V - 3 * Vf - V_{RCB}}{17 mA} (K\Omega)$$
。 Vf 为灯珠工作时正向压降电压。


12V 方案传输距离可达 10m, 24V 带六颗灯的方案传输距离可达 5m。

11. 封装信息

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	e 1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	